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What is the impact of voxel 
size on accuracy?
Particle transport through a voxelized geometry has two 
effects: the material is constant throughout the voxel and 
the dose value is the average of all energy depositions 
inside the voxel.

The input computed tomography (CT) image is usually 
downsampled to the calculation voxel size, which leads 
to a certain blurring of density interfaces, for example 
around the patient outline, internal airways, lung tissue 
and bones. The resampling preserves mass, i.e. it has no 
effect on the total absorption of energy, but may have an 
effect for voxels that contain very different tissues. The 
natural limit for this effect is the original CT resolution 
(both determined by image pixel size, slice spacing and 
reconstruction kernels). Using smaller voxels than image 
resolution for dose computation will have no beneficial 
effect on accuracy with respect to density effects.

Although the particle transport can deposit energy in any 
position within one voxel, the dose value for a voxel is an 
average over the voxel volume. This results in a blurring of 
the dose distribution. In contrast to the density blurring, 
there is no lower limit for the voxel size where this effect 
disappears. However, due to the physics of photon and 
electron transport, voxel sizes below 1 mm do not improve 
the spatial resolution of the dose distribution further. 
Observe that a similar dose averaging effect is also produced 

by the finite volume of dose detectors. For example, for 
water phantom measurements with a 0.125 ccm ionization 
chamber, a voxel size of 5x5x5 mm3 would produce a similar 
dose blurring effect.

In short, there is no rationale for voxel sizes below 1 
mm. For all clinical applications apart from extremely
small stereotactic volumes, a voxel size of 2 mm may be
considered as more than adequate.

What is the meaning of the 
statistical uncertainty?
Monte Carlo methods estimate the dose in a voxel up to 
some residual uncertainty. SciMoCa employs uncertainty 
levels of “Extra Fast”, “Fast”, “Precise”, “Extra Precise”, 
which correspond to uncertainties of 4%, 2%, 1%, and 
0.5% respectively. These uncertainty values are to be 
understood as random statistical uncertainties (“noise”) 
and describe the average uncertainty of all voxels with D 
> 0.7 * Dmax. Notice that the dose uncertainty increases
with 1/D, i.e. it is higher in low dose regions than in the
target. Hence, the uncertainty settings are for the minimum
relative uncertainty. The noise of the dose distribution is
approximately Gaussian; this means that at “Extra Precise”,
only 70% of the voxels with dose greater than 70% of
Dmax will have an uncertainty of less than 0.5%. However,
among 10000 voxels of a target volume, 455 will have a
deviation of more than 1% and 27 of more than 1.5%.
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Monte Carlo uncertainties have an impact on DVHs as 
well. This is most visible for target volumes and affects the 
maximum and minimum dose most. Target volume mean 
dose, as well as normal tissue dose-volume points, will be 
much more stable.

SciMoCa´s uncertainty levels “Extra Fast”, “Fast”, “Precise”, 
“Extra Precise” mean that the number of histories from 
step to step is quadrupled. Typically, simulations require 
between 108 and 1010 histories, depending on voxel size, 
target volume and uncertainty setting.

By default, repeated runs of the same case would yield 
the same results within floating point precision, because 
the seeds of the random number generators (RNGs) are 
fixed (each computing thread has an individual seed). It is 
also possible to set an option which starts the RNGs with 
random seeds at each run, in which case the results would 
differ within statistical uncertainty. Notice further that the 
results depend on hardware concurrency, i.e. the number 
of threads that can be started on a computer.

What is the meaning of Dose-To-Water 
versus Dose-To-Medium calibration?
Dose-To-Medium (D2M) is the natural result of any Monte 
Carlo computation. By virtue of the application of cavity 
theory, it is possible to convert it to Dose-To-Water (D2W). 
A proper re-calibration requires the knowledge of the 
secondary electron spectrum in each voxel, which is not 
normally stored in clinical Monte Carlo computations 
for efficiency reasons. Thus, the customary way (and 
the one employed in SciMoCa) is the application of a 
material specific, voxel-wise calibration factor, which is 
an approximation. Because of this, and because the D2W 
calibration amplifies differences in material definition, dose 
computation algorithms should always be compared on 
the basis of D2M calibration. This is particularly true for 
phantom computations, where material compositions may 
differ even more between algorithms than in tissues.

When comparing Monte Carlo results to measurements, the 
situation is also not clear cut. Even though a measurement 
device may be calibrated to D2W, and may be considered 

“water-equivalent” while in water, the situation changes 
when it is immersed in a different material. Normally, 
the device is neither water-equivalent with respect to its 
stopping power, nor is it small enough to be considered 
without influence on the secondary electron flux. Therefore, 
detectors do not measure dose-to-water when immersed 
in non-water material. If a detector has a spectral-, depth-, 
off-axis- or beam quality dependence, it will also show a 
deviation from dose-to-water when measuring in non-
water material. Thus, differences between simulation and 
measurements will be smallest in mid-sized, flattened beams 
and largest in stereotactic flattening-filter free beams.

Which materials are identified?
SciMoCa assigns material properties (cross sections, 
stopping powers) according to the mass density values 
derived from the CT image. The materials are air (<0.01 g/
cm3), lung (<0.75 g/cm3), fat-like soft tissue (<0.99 g/cm3), 
soft tissue (<1.12 g/cm3), water (=1.0 g/cm3), bone (>1.12 g/
cm3), titanium (=4.54 g/cm3)and steel (=8.0 g/cm3). Material 
properties within these categories are modified according 
to mass density, i.e. soft tissue with density 1.01 and 1.05 
are of the same type with respect to atomic composition, 
but have different material properties.

How does SciMoCa compare to 
other Monte Carlo codes?
General purpose Monte Carlo codes, like EGSnrc, MCNP 
or PENELOPE, can be applied to a much greater range of 
problems than specialized codes like SciMoCa. Although 
they share a great many methods, SciMoCa omits complexity 
that does not pay off for the case of megavoltage, external 
beam irradiation of patients. For example, SciMoCa is not 
designed for kilovoltage radiation or ionization chamber 
simulations. The three main aspects of specialization are:

1. the restriction to rectilinear voxel geometries, enabling 
faster tracking of particles

2. the restriction to few material types, with individual 
material composition, enabling faster material property 
look-up and on-the-fly computation

3. the omission of interactions at low photon and electron 
energies, like spin effects or atomic relaxation, enabling 
a simpler handling of material properties

SciMoCa shares these restrictions with other specialized 
Monte Carlo codes that have been introduced clinically, like 
VMC++ and XVMC. Like these, it derives its fundamental 
concepts from the works of Bielajew, Fippel, Kawrakow and 
Rogers and is thus in the tradition of the EGSnrc/XVMC/
VMC++ family of codes as a class II condensed history 
algorithm with sophisticated variance reduction techniques 
(VRTs).

The SciMoCa patient transport code is a thorough 
implementation of these physics concepts, with some 
additional accelerations afforded by exploiting contemporary 
CPU architectures. It was constructed against the benchmark 
of EGSnrc with the goal of keeping deviations in the 
toughest artificial situations to a maximum of 2%, in order 
to achieve agreement within statistical uncertainty in clinical 
situations (see figures 1 and 2)
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Fig 1: 10x10 mm2 field, 6 MeV mono-energetic point source, 150 mm slab of 
ICRU-lung material with 0.25 g/cm3 starting at 50 mm depth. Blue: SciMoCa, Red: 
EGSnrc. Residual errors at interfaces are a consequence of simplified boundary 
crossing algorithm in SciMoCa.

Fig 2: 10x10 mm2 field, 6 MeV mono-energetic point source, 20 mm slab of 
ICRU-bone material with 2.00 g/cm3 starting at 50 mm depth. Blue: SciMoCa, 
Red: EGSnrc. Residual errors at interfaces are a consequence of simplified 
boundary crossing algorithm in SciMoCa.

The main discriminator to the EGSnrc/XVMC/VMC++ family 
is the virtual source accelerator head and collimator model 
(“virtual source model”, VSM), which makes heavy use 
of VRTs for speed-up. SciMoCa´s unique feature is the 
elaborate tuning of the VRTs across source model and 
patient transport code, in order to maximize efficiency1 
and minimize non-Gaussian noise.

Why does SciMoCa not use 
a GPU architecture?
For the efficient simulation of the accelerator head and 
variable collimators, variance reduction techniques (VRT) 
can be applied to great benefit. In principle, VRTs are 
ways to perform computations with fewer operations, 
very much like a*u + a*v = a*(u + v) saves one operation. 
Usually, VRTs come with some overhead in terms of 
memory management, and with some price in terms of 
code complexity. Both factors are a greater problem for 
a GPU architecture, which is specialized for executing the 
same set of instructions in parallel on many data entities 
(SIMD, single instruction, multiple data) than for a CPU 
architecture (MIMD, multiple instructions, multiple data). 
SciMoCa is designed to be versatile and work with very 
diverse accelerator head geometries, and has a Precisely 

balanced suite of VRTs to couple the accelerator head 
model with the patient model. Hence, the code executes 
preferentially on a CPU architecture.

Why does SciMoCa use 
Virtual Source Models?
Virtual sources are an analytical representation of a phase 
space. Compared to phase space files with a finite number 
of particles, they have the advantage of high computation 
speed (because of minimum memory throughput) and zero 
latent variance (because particles do not have to be re-used 
to arrive at the required number of histories). They also 
offer an unrivalled degree of flexibility, which is essential 
for wide-spread clinical deployment for a large number of 
different linacs.

As in all aspects of Monte Carlo simulations, it is important 
to hit the right balance between simplification and accuracy. 
SciMoCa´s virtual sources are constructed from phase space 
files generated by BEAMnrc. A unique process extracts the 
numbers and properties of up to five sources from the phase 
spaces. Sources can be planar or volumetric, have angular-
dependent spectra and energy fluence and can contribute 
photons, electrons or back-scatter into the monitor chamber. 
For each accelerator type, there is a characteristic set of 
source properties and parameters that are fixed, and some 
parameters that need to be fitted. In result, the virtual 
sources have the potential to reproduce any phase space 
of an idealized linac in terms of its dosimetric accuracy, but 
have the added flexibility to be easily tuneable to a real linac.

The beam modelling process would generate a number of 
reference beam models that cover the variability of beam 
tunes in practice. For example, for a given linac type, the 
maximum energy of a 6 MV beam quality may vary between 
5.8 MeV and 7.2 MeV. This family of reference models is the 
basis for a similarity-search-and-interpolation strategy that 
produces a specific beam model as a new family member.

How does SciMoCa simulate 
variable collimators?
SciMoCa employs a unique generic 3D collimator model 
which can account for such details as single- or double 
focussing leaf design, stepped leaf sides, rounded leaf 
and jaw faces, inter-leaf leakage etc. The collimator 
elements are not described to the last detail (currently, 16 
different MLC types are supported), but well enough to 
be dosimetrically indistinguishable from full simulations. 
Because of inaccuracies in vendor drawings, manufacturing 
tolerances and unknown or variable material compositions, 
the models may need to be tuned to individual linacs, 
even though they should be invariable. Scattered photons 
are suppressed if they would not contribute to the dose 
distribution. Secondary electrons are suppressed.
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How does SciMoCa simulate 
dynamic deliveries?
In contrast to analytical algorithms (Pencil Beam, 
Convolution/Superposition, Collapse Cone, Linear 
Boltzmann Equation Solvers), Monte Carlo does not have 
to discretize the time dimension. Instead, the time axis can 
be sampled just like any other dimension of a simulation: 
for example particle energy, direction or origin. In practice, 
every particle is assigned a random time of emission. During 
the simulation, the collimators, gantry and couch are placed 
according to this emission time. Hence, every particle history 
samples a different time point and is tracked through a 
different linac configuration.

A typical example is the discretization of the gantry angle 
of VMAT-arcs as done as approximation by analytical 
algorithms, which manifests in characteristic dose difference 
patterns w.r.t. to the dose calculated as ‘continuous arc’ by 
Monte Carlo, see fig. 3.

Fig 3: (a) SciMoCa dose (with continuous sampling of the gantry angle) calculated for a 15MV-rectum VMAT plan; 
(b) and (c) show effects of arc discretization into 2- or 4-degree sectors, respectively.

(d) and (e) show the relative dose differences to the SciMoCa-dose in (a).

(a) (c)

(d)

(b)

(e)

SciMoCa, Continuous Arc

+1.5%
+1.0%
+0.5%
-0.5%
-1.0%
-1.5%

Arc Discretization: 2 Degrees Arc Discretization: 4 Degrees
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How was SciMoCa validated?
Throughout its development, SciMoCa patient transport 
code was benchmarked against EGSnrc with tests designed 
to highlight any weakness in the algorithm. These tests 
largely exceeded the demands of clinical cases, but had 
simplified beam properties. Typically, they would be point 
sources, rectangular fields and mono-energetic beams. 
SciMoCa was validated for materials between mass density 
0.25 g/cm3 and 8.0 g/cm3 and photon energies between 
1 MeV and 25 MeV. The maximum deviation for all test 
cases was 2%, but was typically not detectable within 
statistical uncertainty. For this reason, the validation of the 
entire algorithm can concentrate on the simulation of the 
radiation source and collimators.

For the validation of the linac beam models, a strong 
preference was given to 1D measurements under 
controlled conditions, preferentially in a water phantom. 
Measurements with film, 2D/3D detector arrays and in solid 
phantoms can quickly result in uncertainties of 2%, which 
are not sufficient for algorithm validation. Measurements 
of realistic plans served the purpose of comprehensive 
end-to-end tests after the validation of the beam models 
were performed. 

Beam model validation can only be performed for a specific 
linac, however the variability between linacs of the same 
type is typically greater than the accuracy limits of SciMoCa´s 
validation tests. In order to achieve a consistently high 
performance of SciMoCa, individual beam modelling and 
validation is indispensable. 

How should SciMoCa be 
validated by customers?
Each beam model is validated with the water phantom data 
provided for its commissioning. A report summarizes the 
agreement. There may be some measurements that deviate 
more than others, and the former would be a good starting 
point for validation against additional water phantom 
measurements. Typically, situations that are challenging 
for beam modelling are also challenging for measurements, 
so that the presence of systematic measurement errors may 
quickly yield a very confusing picture.

One fundamental advantage of Monte Carlo over any 
other dose computation algorithm is its modularity - the 
source properties do not change with collimator settings - 
which results in self-consistency of the simulated doses. For 
example, the same photons that hit the collimators for a 
100x100 mm2 field will hit the collimators for a 50x50 mm2 
field. Self-consistency in this context means: it is not possible 
that the larger field is correct and the smaller field is wrong 
in the simulations, and vice versa. This statement typically 
holds for field sizes that differ less than a factor 2. With 
this rule of thumb, measurement data can be identified 
as problematic and inconsistent with the rest. It is also 
possible to modify the initial experimental plan such that 
the feature in question can still be investigated, but with 
smaller experimental error. For example, the depth dose 
curve of a 10x10 mm2 and a 30x30 mm2 field contain the 
same information with respect to the beam model (the 
primary spectrum), but the latter is substantially easier to 
measure to an accuracy that allows validation of SciMoCa.

Each SciMoCa beam model is uniquely tuned to one 
individual linac, but it is also derived from a family of 
realistic reference beam models, which lends additional 
robustness to the performance. Therefore, in practice, the 
dominating source of disagreement between SciMoCa, 
TPS and measurements are small field output factors and 
MLC calibration. A solid calibration of the MLC positions in 
the Monte Carlo simulation is virtually the most important 
prerequisite for accuracy of dynamic IMRT/VMAT treatment 
plans. MLC calibration can be determined from static 
abutting field strips or via a dosimetric leaf gap (DLG) 
experiment. Notice also, that due to manufacturing 
tolerances, the inter-leaf leakage of some MLC models 
can vary substantially, so that this parameter may have 
to be tuned.

Typically, the deviations caused by MLC calibration / small 
field output factor errors become worse with a higher 
modulation degree of the treatment plans. Although 
different errors can compensate each other, there should be 
a trend in target dose and/or the most spared normal tissues 
with increasing number of MU/Gy. Thus, it is advisable to 
start SciMoCa/TPS/measurement cross-validation with low 
modulation cases, maybe even the reference field, and 
gradually move towards more demanding plans.
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Further, a very important point is to ensure the correct 
configuration setup: is the Hounsfield-to-Density calibration 
correct? Are mass- or electron densities used in the 
calibration table? Is the handling of the external patient 
contour correct? Is the handling of the treatment table 
correct? Is the monitorunit calibration correct?

What are the correct density 
values for phantom materials?
Phantom materials, especially when they are not labelled 
as “water equivalent”, pose a double problem for accurate 
dosimetric validation. Assignment of a density according to 
a Hounsfield calibration table will almost certainly yield the 
wrong result, as will a measurement without a material- and 
detector specific calibration factor. Furthermore, SciMoCa 
will interpret non-water materials as “tissue with mass 
density x”, which causes errors especially for lung- and 
bone-mimicking phantom materials.

It is therefore of paramount importance to determine both 
the specific mass density and the detector calibration factor 
for every dose measurement in a solid phantom. Notice 
that these parameters can depend on beam quality (energy 
AND flattening filter presence), field size (IMRT/VMAT vs. 3D 
conformal vs. SBRT) and measurement depth, particularly 
for measurement in non-water equivalent phantom 
materials. Depending on the planned experimental 
setup, these parameters can deviate from manufacturer 
recommendations.

A good way to proceed is to determine the appropriate 
phantom mass density to be used for SciMoCa-simulations 
by tweaking it until a phantom measurement and its 
Monte Carlo simulation match perfectly for a mid-sized 
field (between 50x50 and 100x100 mm2). Notice, since 
the detector calibration needs to be determined in parallel, 
the measurement should include multiple points for depths 
between the dose maximum and about 100 mm. Modify 
the mass density until all dose points deviate by a constant 
factor, which is the detector calibration.

As a rule of thumb, effective mass densities for SciMoCa 
are lower than real mass densities, because most polymers 
have a Zeff that is slightly lower than the Zeff of a tissue of 
the same mass density. For example, for a 6 MV beam, 
PMMA has an effective mass density of 1.13 (vs. 1.145 real) 
and a calibration factor for 0.125 ccm ionization chamber 
of roughly 1.01 (Chamber measures more than SciMoCa 
D2M). Larger correction factors will be obtained for lung- 
and bone-mimicking materials.

What is there to know about 
Gamma analysis for Monte 
Carlo dose computations?
In principle, the Gamma analysis should be independent 
of such parameters as voxel size or grid alignment - 
interpolation of the reference and compare grid should 
be the standard in any interpolation. However, Gamma 
analysis can be perturbed by statistical uncertainties in the 
reference grid and compare grid in a different manner2. A 
noisy reference distribution artificially increases the spread of 
Gamma-values (thereby diminishes pass rates), while a noisy 
compare distribution artificially decreases Gamma-values 
(thereby increases pass rates). Notice that also analytical 
algorithms produce discretization residuals in the dose 
distribution (they are not as smooth as they would physically 
be) which can have effects on Gamma pass rates and can 
influence the performance of dose interpolation.
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Footnotes:
1. Efficiency in Monte Carlo simulations is often expressed as  

e = 1/(s2T), where T is the computation time and s the statistical 
uncertainty. While this is the global view, it is also possible to 
compare the efficiency per history eh = 1/(s2N), where N is the 
number of histories. Variance reduction techniques aim to increase 
eh, but come at an expense of time per history T/N. Notice that 
eh is independent of the specific hardware, but depends on the 
hardware architecture (e(CPU) > e(GPU)). In contrast, e can be 
boosted with investment in more powerful hardware.

Fippel 1999: M. Fippel: Med. Phys. 26, 1466 (1999)

Kawrakow 1996: I. Kawrakow, M. Fippel, K. Friedrich: Med. Phys. 23, 445 (1996)

Kawrakow 1997: I. Kawrakow: Med. Phys. 24, 505 (1997)

Kawrakow 2000a: I. Kawrakow, M. Fippel: Phys. Med. BioI. 45, 2163 (2000)

Kawrakow 2000b: I. Kawrakow: Med. Phys. 27, 485 (2000)

Kawrakow 2001: I. Kawrakow in: A. Kling et al. (eds.), Advanced Monte Carlo for Radiation Physics, Particle Transport Simulation and Applications, Springer-Verlag Berlin 
Heidelberg (2001)

Feature Value/Reference Description

electron cut-off energy for last Multiple Scatter step < 240 keV

fractional energy loss of electron Multiple Scatter step 0.12

bremsstrahlung production cut-off energy > 6 keV

photon cut-off energy (local energy deposit) < 60 keV

minimum/maximum particle 

weight(Russian Roulette ratio)
0.5 < w < 2.0

maximum photon energy < 25 MeV

KERMA-approximation threshold energy < 1.0 MeV

Material properties ICRU 46 XVMC

Material property computation Kawrakow 1996, Fippel 1999 VMC, XVMC, VMC++

Photon effects Photoelectric absorption, Compton scatter, 

Pair production (Kawrakow 2000a)
XVMC, VMC++

Electron effects Elastic scatter, Møller, Bremsstrahlung 

(Kawrakow 1996, 2000a)
XVMC, VMC++

Positron effects Elastic scatter, Bhabha, 

Bremsstrahlung(Kawrakow 1996, 2000a)
XVMC, VMC++

Multiple Scatter theory Kawrakow 2000b EGSnrc, VMC++

Multiple Scatter boundary crossing Kawrakow 1997, 2001 XVMC, VMC++

Variance reduction techniques Woodcock tracking, adaptive history repetition, adaptive 

particle splitting, Russian Roulette, KERMA-approximation
XVMC, VMC++

Random numbers Pseudo, cycle 248-1

2. An excellent summary of the mathematics of Gamma analysis and 
the influence of statistical uncertainties and finite grid size can 
be found in Clasie et al., Phys. Med. Biol. 57, 6981-6997 (2012).




